AN ANALOGUE OF A THEOREM OF KURZWEIL

DAVID SIMMONS

to appear Nonlinearity
http://arxiv.org/abs/1412.5992

Abstract. A theorem of Kurzweil (’55) on inhomogeneous Diophantine approximation states that if \(\theta \) is an irrational number, then the following are equivalent: (A) for every decreasing positive function \(\psi \) such that \(\sum_{q=1}^{\infty} \psi(q) = \infty \), and for almost every \(s \in \mathbb{R} \), there exist infinitely many \(q \in \mathbb{N} \) such that \(\| q\theta - s \| < \psi(q) \), and (B) \(\theta \) is badly approximable. This theorem is not true if one adds to condition (A) the hypothesis that the function \(q \mapsto q\psi(q) \) is decreasing. In this paper we find a condition on the continued fraction expansion of \(\theta \) which is equivalent to the modified version of condition (A). This expands on a recent paper of D. H. Kim (’14).